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EXECUTIVE SUMMARY 
 

At the request of Product Manager Soldier Clothing and Individual Equipment 
(PM SCIE), this program compared the biophysical measures and radiative properties 
from five physical fitness ensembles.  The specific goal was to model and compare the 
heat strain and discomfort differences between black and gray t-shirts. 

 
Biophysical properties were measured for each ensemble using a sweating 

thermal manikin.  These results showed little differences existed across each of the 
ensembles, where at 0.4 m/s the ranges were between 0.88 – 0.92 clo and the 
evaporative potential (im/clo) ranged from 0.51 – 0.54.  Spectrophotometric measures 

differed across the ensembles, where reflection (𝐺𝜆𝜌) 0.24 – 0.49, absorption (𝐺𝜆𝛼) 0.5 
– 0.75, and transmission (𝐺𝜆𝜏) 0.01 – 0.04. 

 
Predictive modeling showed that heat strain responses were similar for all of the 

ensembles.  While overall the wicking gray shirt had generally better and the wicking 
black shirt had least favorable values; the differences in impositions to the human are 
relatively negligible.  Similar to the heat strain predictions, modeling for thermal 
sensation (discomfort) showed very little difference between each of the clothing 
ensembles 

 
This work measured and modeled the differences between the biophysical 

properties and solar properties of five different t-shirt and clothing ensembles. Results 
from this assessment support the interest of the Army for purchasing and implementing 
the replacement of the former gray physical fitness t-shirt with a new black physical 
fitness t-shirt. The currently fielded gray t-shirt and two optional wicking t-shirts were 
also assessed. 
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INTRODUCTION 
 
 Clothing by design both protects the wearer from environmental threats as well as 
imposes a level of thermal burden.  Both the biophysical resistances (thermal and 
evaporative) and spectrophotometric (reflectance, absorptivity, and transmittance) 
properties of clothing can have a significant influence on the impact of the environment 
on the wearer.  To model these impacts on human thermal sensation (e.g., thermal 
comfort) and thermoregulatory responses (e.g., heat strain), measurements of the 
biophysical properties and the spectrophotometric measures can be used in 
mathematical models to simulate responses based on environmental conditions and 
activities.   
 
  At the request of Product Manager Soldier Clothing and Individual Equipment 
(PM SCIE), a comparison was conducted assessing the thermal impact of five different 
t-shirts.  The PM SCIE request was to conduct biophysical assessments, coupled with 
modeling and analysis, with the goal of determining whether new black t-shirts absorb 
more solar radiation than gray t-shirts they replaced, which could potentially increase 
thermal strain and decrease thermal comfort.  Four of the five t-shirts tested were 
prototypes under consideration; while the fifth t-shirt, the test control, was the formerly 
fielded gray t-shirt.  
 

METHODS 
 
 Standard measurement methods were used to assess both the biophysical 
properties and spectrophotometric properties of each of the five clothing ensembles and 
these measured values were input into a thermal sensation model for assessing 
discomfort and a thermoregulatory model for simulating heat strain. 
 
Ensembles 

 
Five exercise ensembles were tested.  For each of these configurations, the only 

difference was the t-shirt; the briefs, shorts, socks, and running shoes were the same in 
all ensembles (Table 1; Figure 1). 

 
Table 1. Exercise clothing ensembles tested 

 
Short Title T-shirt Shorts, socks, running 

shoes 

Control (T0) Gray; 100% polyester 

Tan 100% cotton briefs, 100% 
polyester black shorts, cotton 
blend crew socks, and New 
BalanceTM running shoes 

Current Black (T1) Army Physical Fitness Uniform 
(APFU) Black; 100% polyester 

Current Gray (T2) Army Physical Fitness Uniform 
(APFU) Gray; 100% polyester 

Wicking Black (T3) New BalanceTM Black wicking 

Wicking Gray (T4) New BalanceTM Gray wicking 
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Figure 1. Physical fitness clothing ensembles assessed 
 

 
T0 

Control 
T1 

Current black 
T2 

Current gray 
T3 

Wicking black 
T4 

Wicking gray 
 
Biophysical Assessments 
 

Biophysical testing was conducted in a climate controlled wind tunnel using an 
articulated heated sweating manikin (Newton 20 zone, Thermetrics, LLC, Seattle, WA 
www.thermetrics.com).  Testing was conducted according to American Society for 
Testing and Materials (ASTM) standards F1291-10 and F2370-10 [1-2] for two 
biophysical properties, thermal resistance (Rct, m

2K/W) and evaporative resistance (Ret, 

m2Pa/W).   
 
Thermal resistance (Rct) is the measure of dry sensible heat transfer from the 

body into the environment, including convection, conduction and radiation.  Evaporative 

resistance (Ret) is the measure of heat loss from the body in isothermal conditions (Ts  
Ta); where Ts is surface temperature and Ta is the air temperature.   Measurements of 
Rct are then converted into total insulation (IT) in units of clo; where 1 clo = 6.45 ∙ IT [3]; 
while Ret measures are converted to vapor permeability index values (im) [4].  A ratio of 
these two measures, im/clo, characterizes the evaporative potential of an ensemble [5]. 

 
Key equations for these biophysical measurements include: 

 

𝑅𝑐𝑡 =
(𝑇𝑠−𝑇𝑎)

𝑄 𝐴⁄
[m2K/W]  (Eq 1) 

 

𝑅𝑒𝑡 =
(𝑃𝑠𝑎𝑡−𝑃𝑎)

𝑄 𝐴⁄
[m2Pa/W] (Eq 2) 

 

http://www.thermetrics.com/
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1 𝑐𝑙𝑜 =  6.45(𝐼𝑇)    (Eq 3) 

 

𝑖𝑚 =
60.6515 

𝑃𝑎

°𝐶
 𝑅𝑐𝑡

𝑅𝑒𝑡
   (Eq 4) 

 
where Ts is surface temperature and Ta is the air temperature, both in °C or K.  Q is 
power input (W) required to maintain the surface (skin) temperature (Ts) of the manikin 
at a given set point; A is the surface area of the measurement in m2; Psat is the vapor 
pressure in Pascal at the surface of the manikin (assumed to be fully saturated), Pa is 
the vapor pressure, in Pascal, of the chamber environment. 
 
Spectrophotometric Assessments 
 

Spectrophotometry measurements were provided by Avian Technologies LLC 
(Sunapee, NH; http://www.aviantechnologies.com/) and Natick Soldier Research 
Development and Engineering Center (NSRDEC). 

  
Thermal effects from solar load (i.e., net radiant load) are dependent on the 

intensity of that load (i.e., radiant flux), clothing properties (i.e., emissivity, absorptivity, 
transmissivity) and the total area exposed to that given load.  The radiant balance can 

be used to describe the net solar effect; where the net solar balance (𝐺𝜆) is a function of 
reflection (𝐺𝜆𝜌), absorption (𝐺𝜆𝛼), and transmission (𝐺𝜆𝜏):  
 

𝐺𝜆 = 𝐺𝜆𝜌 + 𝐺𝜆𝛼 + 𝐺𝜆𝜏  (Eq 5) 

  

Reflection (𝐺𝜆𝜌) is radiation redirected back into the environment, absorption 
(𝐺𝜆𝛼) is absorbed into the material or surface, and transmission (𝐺𝜆𝜏) is passed through 
the material (Figure 2).  

 
Figure 2. Spectrophotometric measures of a material 

 

 

material 

http://www.aviantechnologies.com/
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Key equations for these spectrophotometric measurements include: 
 

𝐺𝜆𝜌 =
𝐼𝜆(𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑)

𝐼𝜆(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)
  (Eq 6) 

 

𝐺𝜆𝛼 =
𝐼𝜆(𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑)

𝐼𝜆(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)
  (Eq 7) 

 

𝐺𝜆𝜏 =
𝐼𝜆(𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑)

𝐼𝜆(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)
  (Eq 8) 

 

where 𝐼𝜆 is the monochromatic intensity of radiation given as a unit of time. 
 
Predictive Modeling 
 
Environment and Activity 

 
Two rates of activity were used, moderate and heavy, for modeling purposes to 

simulate a slow jog (moderate) and sprinting (heavy rate, e.g., Army Physical Fitness 
Test - 2 mile run).  These two work rates were each modeled at three different 
environmental conditions.  Based on suggested locations, historical data provided by 
the 14th Weather Squadron of the Air Force Weather Agency (AFWA) was used (Table 
2.) 
 

Table 2. Environmental conditions and activity work rates 
 

Location Symbol Latitude 
Air 

Temp. 
(°C) 

Dew Point 
Temp. 

(°C) 

RH 
(%) 

Work 
Rate 

Southeast (Fort Benning)  [1A] 32 N 32.4 23.1 40 

Moderate South (Fort Bliss)  [1B] 32 N 35.5 19.6 58 

Southwest (Yuma, AZ)  [1C] 35 N 39.5 48.9 16 
       

Southeast (Fort Benning)  [2D] 32 N 30.8 23.1 40 

Heavy Northeast (Fort Drum)  [2E] 44 N 23.7 16.1 62 

Southwest (Fort Irwin)  [2F] 35 N 38.2 6.3 14 
*Each modeled for full sun and wind speeds of 1m/s 

 
Heat Strain 

Heat strain predictions were modeled using a modified SCENARIO model [6-7] 
and a subset of equations from the USARIEM Heat Strain Decision Aid (HSDA) [8-10].  
Specific equations included an estimate of the evaporation required for balancing heat 
(Ereq), and maximal evaporative capacity (Emax), as:   

 

𝐸𝑟𝑒𝑞 = 𝑀 + (𝐵𝑆𝐴 ∙
�̅�𝑠𝑘−𝑇𝑑𝑏

𝑅𝑐𝑡
) (Eq 9) 
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𝐸𝑚𝑎𝑥 = 𝐵𝑆𝐴 ∙
𝑃𝑠,𝑠𝑘−𝑅𝐻∙𝑃𝑎

𝑅𝑒𝑡
 (Eq 10) 

 

where M is metabolic heat (W), BSA is surface area (m2), T̅sk is the average skin 
temperature (°C) at the surface, Tdb is the dry bulb temperature (°C), Ps,sk is saturated 
vapor pressure at the skin temperature (pascal), Pa is vapor pressure (pascal), and RH 
is relative humidity (%). 
 
Thermal Sensation (TS)  

An individual’s thermal comfort is generally viewed as a subjective condition. 
However, it has been shown to have a specific relationship to the environmental 
conditions, clothing worn, thermal state (e.g., core and skin temperature), and skin 
wettedness [11-15].  A number of thermal comfort scales exist that predict the mean 
thermal sensation (TS), e.g., level of discomfort for an individual, given various 
conditions [13, 16-17].  For this effort, thermal comfort modeling was conducted using a 
9 point scale (0-8), where 0 is unbearably cold and 8 is unbearably hot [18].  The 
predictions were based on core body (Tc) and skin (Tsk) temperatures to predict mean 
TS, using Equation 11: 

 

𝑇𝑆 = 1.967 ∗ 𝑇𝑐 + 0.174 ∗ 𝑇𝑠𝑘 − 74.841 (Eq 11) 

 

RESULTS 
Biophysical Results 

 
Biophysical assessments were conducted according to ASTM standards and 

additional testing was conducted to determine the wind velocity coefficients [19].  
Standard measures of IT and im/clo at 0.4 m/s and at modeling input measures of 1 m/s 
are shown in Table 3; while wind velocity curves are shown for clo, im, and im/clo in 
figures 3-5.  From these data we see that, from a biophysical perspective, there is very 
little difference between each of the ensembles.  

 
Table 3.  Total thermal resistance (IT, clo) and evaporative potential (im/clo) at 0.4 m/s 

(ASTM standard) and 1 m/s (model input) 
 

 Wind Velocity 

 0.4 m/s (Still air) 1 m/s 

 clo im /clo clo im /clo 

Control (T0) 0.88 0.54 0.65 0.74 
Current Black (T1) 0.91 0.51 0.65 0.73 

Current Gray (T2) 0.92 0.52 0.65 0.73 

Wicking Black (T3) 0.91 0.53 0.65 0.74 

Wicking Gray (T4) 0.89 0.52 0.65 0.73 
Note: lower clo = less thermal resistance, higher im/clo = better evaporative potential. 
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While the test standard for measuring insulation is 0.4 m/s, during active exercise 
or in outdoor setting, the effective air or wind velocity is generally ≥ 1.0 m/s.  Thus there 
is virtually no real difference in IT between the 5 ensembles under most conditions. 

 
 

Figure 3.  Thermal resistance (clo) for the 5 ensemble configurations 
 

 
 

 
 

Figure 4.  Vapor permeability index (im) for the 5 ensemble configurations 
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Figure 5.  Evaporative potential (im/clo) for the 5 ensemble configurations 
 

 
Spectrophotometric Results 
 

Spectrophotometric measured data of reflection (𝐺𝜆𝜌), radiation redirected back 
into the environment, absorption (𝐺𝜆𝛼), radiation retained into the material, and 
transmission (𝐺𝜆𝜏) of radiation through the material are provided in Table 4. 
 

Table 4. Spectrophotometric measures for the 5 ensemble configurations 
 

Configuration Reflectance 

(𝝆) 

Absorptivity 

(𝜶) 

Transmissivity 

(𝝉) 

Captured Solar 

(1-𝝆) 

Control (T0) 0.25 0.71 0.03 0.75 

Current Black (T1) 0.36 0.60 0.04 0.64 

Current Gray (T2) 0.24 0.68 0.07 0.76 

Wicking Black (T3) 0.24 0.75 0.01 0.76 

Wicking Gray (T4) 0.49 0.50 0.01 0.51 

 
 
Predictive Modeling Results 
 
Heat Strain 

 
Predictive modeling of the human thermal responses showed relatively similar 

heat strain between each of the clothing ensembles during both moderate and heavy 
work conditions (Table 5; Figures 6 and 7).  While the wicking gray shirt (T4) tended to 
be better overall and the wicking black shirt (T3) had the least favorable values; these 
differences, in terms of their net effect on the human wearers, were negligible. 
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Table 5. Modeled responses moderate work (~1 hour) and heavy work (2 mile run) in each environmental condition. 
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Figure 6.  Simulated heat strain via core body temperature (Tc) to each clothing 
configuration, activity, and environment 

 
 

 
Figure 7.  Simulated heat strain via skin temperature (Tsk) to each clothing 

configuration, activity, and environment 

 
 

1A - Southeast (Fort Benning); 1B - South (Fort Bliss); 1C - Southwest (Yuma, AZ) 
2D - Southeast (Fort Benning); 2E - Northeast (Fort Drum); 2F - Southwest (Fort Irwin) 

38.4

38.6

38.8

39

39.2

39.4

39.6

39.8

C
o

re
 t

e
m

p
e

ra
tu

re
 (
°C

) 

T0

T1

T2

T3

T4

35.6

35.8

36

36.2

36.4

36.6

36.8

37

37.2

37.4

Sk
in

 t
e

m
p

e
ra

tu
re

 (
°C

) 

T0

T1

T2

T3

T4

1A  1B  1C  2D  2E  2F 

1A  1B  1C  2D  2E  2F 



 11 

Thermal Sensation (TS) 
 
Similar to the heat strain predictions, modeling for TS (e.g., discomfort) showed 

very little differences between each of the clothing ensembles (Figure 8; Table 6).  As 
the scale is from 0-8, there were relatively no differences across the higher intensity 
activity simulations (i.e., 2D, 2E, 2F).     

 
Figure 8. Modeled thermal sensation (TS) for each clothing ensemble within set activity 

and environmental conditions based on a 9-point (0-8) scale 
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2D - Southeast (Fort Benning); 2E - Northeast (Fort Drum); 2F - Southwest (Fort Irwin) 

 
*Note: The 9-point scale goes from 0-8, therefore all values ≥ 8 should be considered the same 
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heat the outer surface of the material or all of the material.  It is important to note that 
the interactions of radiation and clothing are more complex than are discussed in this 
report.  The basic principles and physics of radiation include specific properties of the 

radiation, including frequency (𝜈, per/second), wavelength (𝜆, 𝜇𝑚), and wavenumber 

(𝜆−1); while the emissions of radiation travel at the speed of light (𝒞), as 𝒞 = ∗ 𝜈.  
Therefore, levels of radiant load are also based on the amount of incoming radiation 
(e.g., from the sun) and the directionality and intensity of the radiation.  Full sunlight, 
even on a clear day, will vary with season, time-of-day and latitude. 

 
The thermal impact of radiant load, including solar radiation, is dependent on the 

intensity of the radiant load in terms of both the total areas and properties of the 
exposed surface areas to the radiant load.  For an individual wearing an ensemble 
consisting of shorts and a short-sleeved t-shirt, approximately 29% of the body surface 
area is covered by the t-shirt, 27% by the shorts, and 44% is uncovered or covered by 
socks and shoes.  Thus any effects related to the different t-shirt will impact less than a 
third of the effective heat exchange surface area. 

 
The radiant load, including solar load, is dependent on both the intensity of the 

radiant load and the properties of the exposed surfaces, including the posture and 
orientation of an individual relative to the radiation sources.   Although the full solar 
spectrum ranges from near ultraviolet to near infrared (300 – 3,000 nm), surface color is 
only a factor in the visible spectrum, approximately 380 – 780 nm.  The non-ionizing 
radiation is either reflected, absorbed or transmitted.  In general, smooth surfaces 
reflect more radiation, so a smooth material will reflect, or capture less, more radiant 
energy than a rough or textured surface.  

 
Roller and Goldman [25] modeled various scenarios where the solar heat load 

imposed onto individuals could be calculated based on location and environment, 
clothing and/or skin tone, and positioning / posture.  With modifications to include known 
values, these methods are useful in determining the net solar heat load imposed on 
soldiers within a given set of conditions.  Roller and Goldman [25] provided calculations 
for a number of scenarios and also developed a simplified general equation (Eq 10).  

Equation 10 calculates the total solar load (𝑅) for the complete incidence of radiation on 
the human by accounting for the individual’s total surface area (𝐴, m2), non-dimensional 
ratios for transmission (𝐶), directional intensity of radiation (𝐼), diffuse radiation (𝐷), 

angles of exposure (𝛾𝑝, 𝑃1, 𝑃2), and albedo (𝑇𝐴1), and the amount of incoming radiation 
reflected from the ground, as:  

 
𝑅 = 𝐴𝐶(𝐼𝛾𝑝 + 𝐷𝑃1 + 𝑇𝐴1𝑃2)    [𝑘𝑐𝑎𝑙/ℎ𝑟]  (Eq 12) 

 
The underlying equations for each of these key elements of transmitted and absorbed 
solar loads (direct, diffuse, and reflected ground) from Roller and Goldman [25] were 
later improved by Breckenridge and Goldman [26].  These improved equations provide 
predicted and measured values for the incidence of solar load, showing close 
agreement between measured and calculated values (SD ± 12 W).  
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 From a modeling perspective, estimating total radiation (RT) can be done using 
simplified empirical methods [27-28], where RT can be estimated based on the amount 

of cloud coverage (𝑥), and amount of energy absorbed (𝑎), in units of metabolic 
equivalence (METS, where 1 MET = 58.15 W/m2) (Eq 13).  Equation 13 can be 
simplified to total watts (W) by individual surface area (A, m2) to: 
 

𝑅𝑇 = 4.6(1 − 0.9𝑥) ∗ 𝑎 [𝑀𝐸𝑇𝑆]  (Eq 13) 
 

𝑅𝑇 = 𝐴 ∗ (4.6 ∗ 58.15(1 − 0.9𝑥) ∗ 𝑎)   [𝑊]    (Eq 14) 
 

While it is desirable to have direct measures of clothing properties, they can be 

often difficult to obtain.  To this end, Watanabe et al., [29] provide a table of 𝛼 values for 
a number of clothing materials and colors, including black, gray, and white.  These 
reported values for black ranged from 0.61 – 0.97, and from 0.36 – 0.88 for gray; the 
black values not being consistently higher for black versus gray.  The ranges of values 
in their findings suggest that any assumptions regarding radiant load being based solely 
on color may be misleading. 

 
When radiation is absorbed, it is usually converted from radiant energy to heat 

(IR), which may be transferred from the clothing to either the skin surface or the 
environment.  A surface heated by solar radiation may actually create a thermal barrier 
to heat gain from the environment if air temperature is less than the clothing surface 
temperature.   Multi-layer clothing, especially if it incorporates reflective layers or more 
open weaves, is a small, but potentially complex dynamic structure that may be 
distorted by compression, contain moisture under-going phase changes or being 
absorbed into clothing fibers, air permeability, etc. In addition, surface characteristics of 
the clothing can alter both emissivity and absorptivity at the clothing surfaces, and may 
change as the sizing in new clothing is lost during wear and washing. Making 
assumptions about heat exchange based on clothing color is rather simplistic.  

   

CONCLUSIONS 
 

This work quantified and modeled the differences between the biophysical 
properties and solar properties of five different t-shirt and clothing ensembles. Results 
from this assessment helped to inform the Army decision to implement a change in the 
physical fitness t-shirt from gray to black. 
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